

NCHRP Project 9-52

Time and Resources

Short-Term Laboratory Conditioning of Asphalt Mixtures

Texas A&M Transportation Institute National Center for Asphalt Technology Pavement Research Center

April 25, 2016

Aging of Asphalt Mixtures

lime and Resource

- Laboratory aging protocols per AASHTO R 30
 - Mix design: STOA 2 hours at Tc
 - Performance testing: STOA 4 hours at 275°F
 - Field aging: LTOA 5 days at 185°F
- Mixture components and production parameters
 - Use of polymer modifiers
 - Inclusion of recycled materials
 - Advent of WMA technologies
 - DMP replacing BMP
 - Increased production temperature

Research Objectives

- Validate laboratory STOA protocol to simulate plant aging of asphalt mixtures (Task I)
- Correlate field aging of asphalt mixtures with laboratory LTOA protocols (Task II)
- Identify factors affecting the aging characteristics of asphalt mixtures (Task III)

Field Projects

Field Projects

Field Project	WMA	Production Temperature	Plant Type	RAP/RAS	Aggregate Absorption	Binder Source
Texas I	V			\checkmark		
Connecticut	V					
Wyoming	V	V				
South Dakota	V					
New Mexico	V			V		
lowa	V	V			V	
Florida	V				V	
Indiana	V		V			
Texas II			V			٧

Validation of STOA Protocols

Time and Resources

Mixture Volumetrics for LMLC vs. PMPC

Time and Resenrces

Percent of Absorbed Asphalt (%P_{ba})

Equivalent volumetrics for lab mix vs. plant mix STOA representative of absorption and aging during production

M_R Stiffness at 25°C/10Hz

Time and Resources

LMLC vs. PMPC

LMLC vs. Construction Core

Equivalent M_R for LMLC vs. PMPC

Slightly lower M_R stiffness for construction core vs. LMLC due to higher AV

Summary – Validation of STOA Protocols

Time and Reserve

Validated laboratory STOA protocols of 2 hours at 275°F for HMA and 240°F for WMA to simulate plant aging

- Volumetrics: LMLC = PMPC
- E* stiffness: LMLC = PMPC
- M_R stiffness: LMLC = PMPC > construction core
- Rutting resistance: LMLC = PMPC > construction core
- Construction core vs. LMLC & PMPC
 - Higher AV (9.0% vs. 7.0%)
 - Use of plaster (degradation and debonding)

Effect of Air Voids

Time and Resources

• Effect of AV on M_R Stiffness

NCHRP 9-49 – Aggregate Orientation

Time and Resources

Quantification of Field Aging

Time and Researces

 Cumulative Degree-Days (CDD): sum of the daily high temperature above freezing for all the days from time of construction to the time of core sampling

CDD Curves

Time and Resources

Property Ratio (PR)

Time and Resources

• To quantify effect of aging on mixture properties

 $PR = \frac{Property\ after\ Aging}{Property\ before\ Aging}$

- Samples before aging
 - Field cores at construction
 - LMLC specimens with only STOA
- Samples after aging
 - post-construction field cores
 - LMLC specimens with STOA + LTOA

CDD vs. PR (M_R Stiffness)

Time and Resources

Field Aging vs. Laboratory LTOA – M_R Stiffness

Time and Resources

 $5d@85C = 17,500 \text{ CDD } (M_R \& HWTT RRP)$

Time for WMA = HMA or HMA_o

Time and Resources

Field site	Climate	CDD Values		
	Cimate	WMA = HMA	$WMA = HMA_0$	
Texas I		16 months	2 months	
New Mexico	Climate	19 months	3 months	
Florida	Climate	15 months	1 months	
Average		17 months	2 months	
Wyoming		32 months*	2 months	
South Dakota	Colder	32 months*	7 months	
lowa	Climate	28 months*	2 months	
Indiana		26 months*	2 months	
Average		30 months	3 months	

* predicted in-service time based on historical climatic information

Summary – Field Aging vs. LTOA Protocols

Time and Reservices

- Proposed CDD to quantify field aging of asphalt pavements
- Proposed PR to evaluate mixture property evolution with field and laboratory aging
- Correlated field aging with laboratory LTOA protocols

ITOA Brotocolo	CDD	In-Service Time		
		Warmer Climates	Colder Climates	
2 weeks at 140°F	9,600	7 months	12 months	
5 days at 185°F	17,500	12 months	23 months	

Factor Analysis*

Time and Resources

Short-term: mixture property Long-term: mixture property ratio

*STAT Validation by ANOVA Analysis

Factor – WMA Technology

Time and Resources

Short-Term: M_R Stiffness Long-Term: M_R Stiffness Ratio

Factor – Plant Type

Time and Resources

Short-Term: M_R Stiffness Long-Term: M_R Stiffness Ratio

FACTOR ANALYSIS SUMMARY

Eactors	Significant?		Tranda	Evolopations	
Factors	ST*	LT*	nenus	LXPIANACIONS	
WMA Technology	Yes	Yes	WMA vs. HMA ST: worse properties LT: faster aging	 Reduced production temperatures WMA additives 	
Recycled Materials	Yes	Yes	RAP/RAS vs. control ST: better properties LT: slower aging	 Over aged binders Less virgin binders available for aging 	
Aggregate Absorption	Yes	Yes	High vs. low abs. ST: worse properties LT: faster aging	 More effective binders available for aging 	
Binder Source	Yes	N/A	Same PG ≠ same properties	 Different oxidation kinetics 	
Production Temperature	No	No	Equivalent mixture properties		
Plant Type	No	No			

* ST = short-term; LT = long-term

Effect of Aging on Field Stiffness Gradient

lime and Resources

-----FWMA-14 months-field

Effect of Aging on Fracture (Damage Density)

ime a

Resoluto

